
Exploiting Low Level Image
Segmentation for Object Recognition

—

Thomas Oskam

September 13, 2007

Abstract

There exist many approaches to object recognition of image data. Most of the methods use a top-
down approach to classify the content, as low-level information is often considered inapplicable
or insufficient for this task. The method presented in this work, however, shows a way to exploit
low-level image segmentation for the purpose of categorizing different object classes of still
images. The key idea is to not only use one single segmentation, but a whole set of different
parameterized segmentations of an image as basis for feature extraction. Segment boundaries
are used as paths along which strings of feature vectors are drawn. These strings are pairwise
aligned to create a scoring matrix, which can be transformed into a Mercer kernel for a standard
SVM based classifier.
Despite the inherit problems of low-level segmentations, this method performs very well on
standard benchmark image databases and shows that segmentation indeed can be used for object
recognition.

The first goal of this semester thesis was to create a Matlab framework that implements the
proposed method for object recognition. With this framework as basis, several approaches to
improve scoring results of pairwise alignments, and thus improve the categorization rate, need
to be tested. Also the parameters used for the string alignment can have an impact on the
performance as well. Therefore, the second goal was to examine different combinations of
methods for feature extraction and string alignment with different parameter settings in order to
find out which configurations lead to the highest retrieval rates.

i

ii

Contents

List of Figures v

1 Introduction 1

2 Ensembles of Low-Level Segmentations 3

3 Feature Extraction 5
3.1 Computation of meaningful paths . 5
3.2 Extracting Features . 7

3.2.1 Polar Scales . 9
3.2.2 Features . 9

3.3 Implementation . 10

4 String Alignment 13
4.1 Alignment Algorithms . 13

4.1.1 Global Alignment . 14
4.1.2 Local Alignment . 14
4.1.3 Repeated Matches . 15
4.1.4 Overlap Matches . 16

4.2 Alignment Matrices . 17
4.3 Implementation . 18

5 Categorization 19

6 Experiments 21
6.1 Experimental Setup . 21

iii

Contents

6.2 Results and Conclusion . 22

7 Conclusion 25

Bibliography 27

iv

List of Figures

1.1 Example of a bad Segmentation . 1

2.1 Segmentation method overview . 4

3.1 Boundary boarder problem . 6
3.2 Boundary split problem . 7
3.3 Boundary postporcessing . 8
3.4 Information Extraction . 9
3.5 Polar Scales . 10
3.6 Probabilistic Boundary Map . 10

4.1 Overlap alignment scheme . 17

6.1 The Polar Scales used for Testing . 21
6.2 The Features used for Testing . 22
6.3 Test Results using a large Polar Scale . 23
6.4 Test Results using a medium-sized Polar Scale 23
6.5 Test Results using a small Polar Scale . 24

v

List of Figures

vi

1
Introduction

The goal of image segmentation is to divide a cluttered scene into regions with similar char-
acteristics. Current segmentation techniques mostly use bottom-up approaches on the basis of
local image properties. Attributes like texture, brightness, color, or motion are locally evaluated
to detect coherent units. This locality, however, is also the biggest weakness of the approach:
Segmentation depends essentially on the quality of these attributes. Poor data conditions like
shadows, occlusions, or noise directly influence the performance of the segmentation. It is often
the case, that the detected segments are not coherent with human perception of the image con-
tent. Figure 1.1 shows an example of a poor quality segmentation. Because of these inherent
difficulties, the usefulness of low-level indentifying of objects in real world images is question-
able, and the current best approaches indeed do not employ low-level image segmentation.

It also has been proposed to treat segmentation and recognition in an interleaved manner to avoid
the above problems (see e.g. [Yu02]). Such approaches typically mix top-down and bottom-up

Figure 1.1: Problems of low-level segmentation. The white anchor in the foreground has a
similar color and similar texture properties as a large part of the background. This
leads to a wrong segmentation where most of the background is associated with the
anchor.

1

1 Introduction

strategies, based on back propagating hypotheses about the objects, down to the segmentation
level. If the initial segmentation is of reasonable quality, which for some applications is true,
these methods seem to work quite well. These meaningful segmentations can often be produced
if other side information can be factored into the process. This is for example the case in video
sequences, where the movement information can be used to determine areas that are coherent
with objects.

For the task of segmenting still images, however, such additional information is usually not
available, which limits the performance of finding coherent areas, in particular if there are
many potential object classes that have to be distinguished from an image. Despite the gen-
erally poor quality of bottom-up approaches in real-world images, we show that it is possible
to exploit segmentation for object recognition. The main idea is to use a whole collection of
different segmentations of the same image to extract meaningful feature vectors to characterize
the displayed object. A segmentation on poor image data, as stated above, will most likely not
capture the complete silhouette of the displayed object. Some parts of the object boundary,
however, will typically be found. A scoring matrix is computed by way of pairwise alignment
of low-level feature strings, which are extracted along these different segment boundaries of a
training image set. This matrix is then transformed into a Mercer kernel and used to train a
standard SVM-based classifier.

The foundation for our work is laid by the principle of compositionality by [Ger98]. As ob-
served in cognition, and especially in human vision, complex entities are perceived as compo-
sitions of comparably few, simple, and widely usable parts. Objects are represented based on
their components and the relations between them. Using a variety of different segmentations
of an image, we expect some of these parts to be captured per segmentation. By consistent
multiple segmentations, we expect most of the object silhouette to be captured.

The main goals of this thesis are twofold: on the one hand, to provide a Matlab implementation
of the object recognition approach in order to perform tests with different configurations and
parameter settings. Both the feature extraction and the string alignment allow different strate-
gies that impact the categorization result. On the other hand, this thesis focusses on testing the
object recognition method with different approaches of feature extraction as well as with differ-
ent alignment methods for the creation of a kernel matrix in order to improve retrieval rates.

The, remainder of this work is organized as follows: in chapter 2, the computation of a series
of segmentations per image is discussed. This lays the foundation for the feature extraction,
which is discussed in chapter 3. Chapter 4 covers the process of string alignment in order to
derive kernel matrices. Several useful alignment methods are discussed in detail as well as the
division of the data into training and test kernels. In chapter 5, a method is shown to transform
the previously computed kernels into valid Mercer kernels that can be fed into a standard black-
box kernel-classifier. Several tests are shown in chapter 6, where different approaches to extract
features in combination with different parameter for the string alignment methods are compared.
The results for these different test settings are presented and several observations are discussed
in this chapter as well. Chapter 7 completes this thesis with an overall summary and conclusion.

2

2
Ensembles of Low-Level
Segmentations

The general problem with image segmentation is to divide the image into connected regions
that represent semantically equivalent parts. In most cases, this equivalence is not modeled
explicitly, but rather dependent on several locally evaluated low-level features, such as color or
texture. Therefore, segmentation methods have to deal with combining many different feature
vectors in a meaningful way to construct these regions.

One popular solution, which is often used for this problem, is to simply stack the different
feature vectors into one high-dimensional vector, as described in [Aga04]. Two different types
of problems can arise with this approach: (i) Such grouping algorithms, on a technical site,
can become increasingly unstable as the dimension of the stacked feature vector grows. This
problem is usually related to the steep increase of local minima of the objective functions. (ii)
On the other hand, the problem of relevance of different features for the segmentation task
arises. A feature that is highly relevant for one particular setting (e.g. the texture of a structured
surface like textile) may only contain useless noise in another setting (e.g. a lambertian surface)
and vice versa.

Our approach to create an ensemble of different segmentations per image uses the solution pro-
posed in [Rot04]. This method combines both ideas of partitioning and feature combination
and selection.
The core idea of this algorithm is the automatic selection of features for a given image. It con-
sists of a Gaussian mixture model with built-in relevance detection which selects the most im-
portant features by maximizing a constrained likelihood criterion. Model selection is performed
by drawing resamples of the object set, training the segmentation model on the individual re-
samples and comparing the resulting solutions. See Figure 2.1 for a schematic demonstration.

3

2 Ensembles of Low-Level Segmentations

Figure 2.1: This figure shows a schematic overview of the image sites and the stacked feature
vector.

Adapted to our image segmentation problem, this strategy translates into sampling different
image sites, inferring a segmentation on the basis of these sites, and identifying stable segmen-
tations (i.e. those which can be reproduced on many different random samples of image sites).
This procedure is repeated for different numbers of mixture modes, and finally a stability-ranked
list of prototypical segmentations is received.

Additionally to selecting stable segmentations, all individual segmentations are superposed to
calculate a probabilistic boundary map, which encodes the probability for each pixel to be part
of the object boundary. This boundary map is later used as one of the image features in the
information extraction process. Chapter 3.2 discusses this in more depth.

4

3
Feature Extraction

The segmentation images Si of an image I produced by the method proposed in [Rot04] are
the foundation for the feature extraction. The parts of interest for the feature extraction are the
patch boundaries Bj(Si) = {(x1, y1), . . . , (xk, yk)}. Information in form of different feature
vectors is drawn from equidistant positions along the postprocessed boundary paths B′

j(Si) of
the different segments and forms a set of strings that represent the object’s properties for the
given image.

3.1 Computation of meaningful paths

The extraction of the boundaries along each patch of a segmented image gives a set of paths Bj

along which features are extracted. These paths, however, typically contain a lot of redundant
and undesired positions. Therefore, the boundaries need to be post processed to improve the
feature extraction.

The most undesired parts within the extracted boundaries are the positions along the image bor-
der. These regions are always considered as a part of a patch boundary as the segmentation step
does not explicitly handle these cases. These pixels at image borders can lead to random feature
vectors drawn inside a displayed object or background. In most cases, his information does not
represent data from the object boundary, and therefore need to be removed from the boundary
path Bj , see Figure 3.1.
The removal of a series of positions from a path leads to gaps which may induce further prob-
lems. The fact that alignment algorithms can handle such gaps, however, allows us to circum-
vent this problem in the future processing pipeline. The alignment of extracted feature strings
is discussed in chapter 4.

5

3 Feature Extraction

Figure 3.1: On the left side, a patch that is reaching over the image border is displayed. The
region that the patch is representing is very likely to go beyond the image boundary.
This leads to undesired positions in the patch boundary, which will lead to random
feature information.

In images of poor quality, namely images with high texture and lighting differences, the seg-
mentation process can lead to a lot of small cluttered regions. These contain, in most cases,
noisy information of the background or small parts of the object. The smaller these patches are,
the less relevant they are to capture the properties of the displayed object class. These paths can
easily be removed by rejecting all boundaries, whose lengths are below a certain threshold.
A source of redundancy arises due to the fact that segment patches are disjoint. This leads to a
lot of paths that follow the same way and therefore should to be removed as well. This, how-
ever, is not crucial to the recognition itself, and will only decrease the workload of the feature
extraction.

As a result of the first post-processing, we obtain a set of boundary paths B∗
j in which redundant

boundary paths or parts thereof have been sorted out. They are now further optimized such that
the drawn feature strings are better suited for the later alignment process. The start point of
a boundary path for example, which is random due to the boundary extraction algorithm, will
have a certain impact on the alignment 1. Therefore it is often helpful to rotate the position
vectors of the path such that an extrema point (i.e. the position with the highest y value) is at
the beginning. The rotated boundaries B∗rot

j are computed as follows:

B∗
j = {(xj, yj), . . . , (xt, yt), (xt+1, yt+1), . . . , (xk, yk)} (3.1)

with

yt+1 = argmax
i

{yi}, (3.2)

B∗rot
j = {(xt+1, yt+1), . . . , (xk, yk), (x1, y1), . . . , (xt, yt)}. (3.3)

Another problem is the only partial capture of boundaries. It can happen that a specific boundary
is split due to the patch reaching the image boundary (See Figure 3.2 for a schematic demon-
stration) resulting in a too low score of the alignment against a path representing the same

1This, in fact, also depends on the alignment method. The start point will have a bigger impact on the result of a
global alignment than a local alignment.

6

3.2 Extracting Features

Figure 3.2: The top row shows two different segments of the same object. On the left side
the patch reaches to the image border. The second row shows the resulting post
processed boundary paths of these segments. The problem that arises is due to the
left patch boundary, which is split once more than the right boundary. This can lead
to a wrong order, meaning that the part of the path that is apart from the rest may be
interpreted on the wrong end of the path and thus may lead to a too low score when
aligned against the other.
This problem can be resolved by extending each boundary along itself, creating a
region in the middle containing the correct order.

object silhouette, because such a partition does not fit for general alignments. The boundaries
thus need to be extended along themselves to improve the stability:

B′
j = {B∗rot

j , B∗rot
j }. (3.4)

After these steps, the boundary paths Bj are reduced to a set of positions B′
j that are suitable

for the feature extraction. Figure 3.3 shows a schematic of the boundary post processing on a
set of segmentations of a stop sign image.

3.2 Extracting Features

The post-processed boundaries B′
j are now ready to be used as paths for feature extraction.

For the purpose of feature extraction, a polar scale P is created that divides a circular space
into different segments with respect to a certain origin (Chapter 3.2.1 discusses polar scales in
more depth). Each segment represents an area of interest over which a feature is averaged. The
combination of all segments in a meaningful2 way leads to a local feature vector. The polar scale
is applied at equidistant points along each path resulting in a feature string for each boundary.
Figure 3.4 shows an illustration of the feature extraction using a polar scale.

2In our implementation the feature vector is created by stacking the segments from the out most layer counter-
clockwise to the innermost layer.

7

3 Feature Extraction

Figure 3.3: In this figure, you can see the different stages of the boundary extraction and post
processing. The image on the top is the target. The three images of the second
row are some the results of the segmentation step. The next row shows the image
boundaries that arise before the post processing step. The fourth row shows the cor-
responding patch boundaries after the processing. The image on the bottom shows
a superposition of the post-processed boundaries.

8

3.2 Extracting Features

Figure 3.4: This is an example of extracting gray values from an image. The polar scale is
applied along a (post processed) patch boundary, where the gray values are summed
up for each segment. The resulting feature vector is used together with the other
vectors along the boundary to form a feature string.

P = {p1, . . . , pl} with pi = {(xi1, yi1), . . . , (xin, yin))}, (3.5)

vk =
kn∑

t=k1

(F (bjx + xt, bjy + yt)) for k = 1, . . . , l. (3.6)

P represents the polar scale, which contains a list of offset positions pi for each segment i. The
feature vector V = [v1, . . . , vl]

T is created by summing up the values in a feature matrix F at a
chosen boundary position b = (bjx, bjy) from B′

j offset with the positions of pi. This results in
a feature vector V for each evaluated position on B′

j . Through the extraction of a feature vector
at different equidistant positions bi on B′

j a feature string Sj = {V1, . . . , Vn} for each boundary
is formed.

3.2.1 Polar Scales

As stated above, a polar scale divides a circular space into a set of segments with respect to
an origin. A polar scale in practice can have two forms; Equidistant and logarithmic. The
equidistant polar scale is defined as a radial scale whose sectors are equally distant with respect
to the origin. In contrast, the logarithmic polar scale uses a logarithmic function to define
the distance to the origin for each segment circle. Figure 3.5 shows each an example of an
equidistant and a logarithmic polar scale.

We have tested the use of either polar scale to determine which one gives better results. In-
tuitively, the log polar scale seems to fit better for the problem as the information taken is
correlated to the distance from the point of on the boundary. However it turned out that both
performed almost equally well for the task of extracting feature vectors.

3.2.2 Features

Features which are extracted along each boundary path B′
j are stored in a matrix F . In our

approach, we use two different features: (i) First, the color information of the original image

9

3 Feature Extraction

Figure 3.5: Different kinds of polar scales. On the left: equidistant 4-4 polar scale. On the right:
logarithmic 4-4 polar scale.

Figure 3.6: The probabilistic boundary map (bottom left image) is created by superposition of
the boundaries of up to 100 different segmentations of the image.

is used. For this purpose the color image is transformed into an intensity matrix with gray
values in the range of [0; 255]. The transformation of the image also includes an equalization,
which is needed to downscale fluctuations in brightness between different images. (ii) The
second feature is a probabilistic boundary map. This feature image is created additionally to the
segmentations of an image (See chapter 2). The probability matrix is built from superpositions
of all boundaries of a variety of segmentations, and represents for each pixel the probability to
be part of a boundary in one of the segmentations. Figure 3.6 shows an example of such a
probability map.

3.3 Implementation

The Matlab implementation, which was an integral part of this thesis, provides several functions
that process the tasks described in this chapter.
The class SA_Image encapsulates an image with its properties into an object. Additional to
functions like setColor, getColor, etc. that allows local manipulation or requests to the image,
the function getBoundaries is given. This function returns a list of boundaries, which are auto-
matically extracted along image patches with the same color value.
To store the boundaries, another class is provided: SA_VectorArray. This class allows to store
vectors with equal m-Dimension and different n-Dimensions into the same data structure. This
is needed as boundary paths can have different lengths, but are composed of position vectors of

10

3.3 Implementation

the same dimension.

The post processing of the boundaries is split up into two functions. First, SA_prepareBoundaries
takes a list of boundaries and performs the pre-processing operations discussed in section 3.1 in
order to remove redundant and undesired positions. Second, the function SA_extendBoundaries
is provided, which extends all boundaries in a list along themselves by a given factor between
[0;1].

In order to extract features along the extracted and post processed boundaries, polar scales
are needed. The two functions SA_getPolarScale and SA_getLogPolarScale return a list of
positions that divide the space according to the passed parameter. Polar scales are also stored in
an instance of SA_VectorArray, and are used as parameter of the function SA_extract to extract
features from a passed feature image. The result of this function is a list of feature strings,
which are also stored in an instance of SA_VectorArray.

11

3 Feature Extraction

12

4
String Alignment

After the features have been extracted as described in chapter 3, the information content of an
image I is now represented in form of a list of feature strings Lfeature = {S1, . . . , Sk} for each
feature matrix F . The next step in the object recognition approach is to compute a similarity
value between two strings in order to create a kernel matrix for a standard black-box classifier.
Alignment in general is a way of arranging two information sequences to identify regions of
similarity that may be a consequence of functional or structural relationships. The process
of boundary extraction and the ensuing feature extraction along the post-processed boundaries
B′

j ensures that the similarity of two strings is indeed a consequence of structural analogy.
Therefore, alignments represent a valuable method for the purpose of calculating a resemblance
score of two feature strings.

4.1 Alignment Algorithms

In order to align two feature strings S1 and S2, several alignment methods can be used. One
thing they all have in common is, that a score function c(U, V) is needed, which gives a simi-
larity value for two elements U of S1 and V of S2. For alignments used in e.g. DNA sequence
alignment, a similarity matrix is given for a discrete and finite set of elements. In our case,
however, the string elements are vectors from Rd. The sample correlation between two vectors,
where each vector index is interpreted as a sample, provides a viable way to compute such a
similarity score.

c(U, V) =
l
∑l

i=1 UiVi −
∑l

i=1 Ui

∑l
i=1 Vi√

l
∑l

i=1 U2
i − (

∑l
i=1 Ui)2

√
l
∑l

i=1 V 2
i − (

∑l
i=1 Vi)2

, (4.1)

13

4 String Alignment

where l = dim(U) = dim(V).

In the following sub sections, four different kinds of alignment methods are discussed. As
the feature stings, drawn along post processed patch boundaries, also incorporate topological
properties of the boundaries (like gaps), several approaches may be viable to ensure a good
alignment score between two strings that represent the same object.

4.1.1 Global Alignment

Global alignment is an approach to align two sequences of different length from the beginning
to the end, allowing gaps. We assume a linear gap penalty d to be applied whenever a gap is
inserted. The dynamic programming algorithm, that solves this problem, is known in biologi-
cal sequence analysis as the Needleman-Wunsch [1970] algorithm. The approach we use is an
adapted version of Gotoh [1982].
The motivation to use global alignment for the purpose of aligning feature strings is the assump-
tion, that two images of the same object also may have similar boundary paths that represent
the object. This may be true for images that show the object from a similar viewing angle, like
frontal pictures of a stop sign. In these cases, global alignment can be applied very well as the
boundaries should be almost equal and the introduction of gaps can handle missing parts in one
of the strings.

The idea is to build a global optimal alignment by using previously computed alignments of
optimal solutions of a subset of the problem. A scoring matrix T is built where T (i, j) is the
score for the optimal alignment of the first i elements of U aligned with the first j elements of
V . The following relations are used to fill the matrix from the top left to the bottom right:

T (i, j) = max


T (i− 1, j − 1) + c(Ui, Vj)

T (i− 1, j)− d

T (i, j − 1)− d.

(4.2)

The final score of the global alignment is s(S1, S2) = T (m, n), which is the bottom right value
of the scoring matrix T , with m being the size of S1, and n the size of S2.

If not only the alignment score s(S1, S2) is needed, but also the alignment itself, a second matrix
A is needed. For each entry T (i, j) computed in the alignment matrix the corresponding entry
A(i, j) is filled with a token, indicating which decision was made in equation 4.2 to compute
the value of T (i, j). To reconstruct the optimal alignment, the matrix A can be traced back from
the bottom right entry A(m, n), reproducing the alignment by means of the local decisions.

4.1.2 Local Alignment

In contrast to global alignment, which tries to align two sequences from the beginning to the
end, local alignment is looking at the best alignment between subsequences of the two given
strings. In the context of object recognition this may lead to better results because objects may

14

4.1 Alignment Algorithms

be captured only partially due to the inherent problems of low-level image segmentation. Local
alignment provides an excellent method to avoid too low scores caused by partial segmentation
errors, which lead to feature strings that mix up image and background information.

The algorithm for finding an optimal local alignment is closely related to the global algorithm
discussed in the previous section. There are two differences, however. First, an additional
possibility for each cell in the scoring matrix is added, allowing T (i, j) to take the value 0. This
allows the algorithm to start a new alignment, as soon as the previous alignment score falls
below zero:

T (i, j) = max


T (i− 1, j − 1) + c(Ui, Vj)

T (i− 1, j)− d

T (i, j − 1)− d

0.

(4.3)

The second change is the possibility of the alignment to end at any place. This implies a
difference in finding the alignment score of the optimal local alignment:

s(S1, S2) = max
i,j

{T (i, j)}. (4.4)

The final alignment score s(S1, S2) is the overall highest entry in the alignment matrix T .
To reconstruct the alignment itself, a second matrix A is needed. In the same manner, as for
global alignment, the decision that was made in 4.3 for each entry T (i, j) is stored in A(i, j).
The reconstruction of the alignment begins at A(is, js), where is, js are the indices of the maxi-
mal entry in T and continues by way of backtracking.

4.1.3 Repeated Matches

The alignment in the previous section gave the best single local alignment score. For long
sequences, however, it is quite possible that there exist many different local alignments with
significant score. This property of the alignment can be viable for several image types. A
displayed object may have multiple alike parts. This is true, for example, in images of an
animal. The legs of the animal have similar silhouettes as well as similar feature properties.
This can lead to cases, in which one string captures the features along one leg, and therefore
can be repeatedly matched to a string representing the the whole animal with all its legs.

Let us assume that we are only interested in alignment scores higher than a threshold value t.
This will be true in general, because there are always small local alignments that arise even in
completely unrelated sequences. To build up the alignment matrix T , first T (0, 0) = 0 has to be
initialized. The matrix T can now be filled using the following relations:

T (i, 0) = max

{
T (i− 1, 0)

T (i− 1, j)− t for j = 1 . . . m,
(4.5)

15

4 String Alignment

with m = length(S1), and

T (i, j) = max


T (i, 0)

T (i− 1, j − 1) + c(Ui, Vj)

T (i− 1, j)− d

T (i, j − 1)− d.

(4.6)

The relation (4.5) handles unmatched regions and ends of matches only allowing matches to end
when they exceed the threshold value T , whereas (4.6) handles starts of matches and extensions.
Note that this method is asymmetric: it finds multiple local alignments of one sequence in the
other.

The individual scores si(S1, S2) can be found by tracing back the first row of the alignment
matrix. The overall score can be computed by summing up the individual scores si:

s(S1, S2) =
∑

i

si(S1, S2). (4.7)

To find the alignment itself similar to the reconstruction for local alignments. The matrix A
again stores the decisions made at the corresponding entries of T . The difference is, that in
repeated matches several alignments may occur. The last alignment is found by starting at
the entry A(isk

, jsk
), where the indices correspond to T (isk

, jsk
); the score entry of the last

alignment. The backtracking of this alignment ends, when i reaches zero. The bottom entry of
the previous column then is the position, where the previous alignment begins. Repeating this
leads to the individual alignments of S1 to S2.

4.1.4 Overlap Matches

Another type of search is appropriate when it is expected that one sequence is contained in the
other, or if they overlap. This method is, in fact, similar to the global alignment, but, in contrast,
it does not penalize overhanging ends. Figure 4.1 shows this schematically.
The motivation to use overlap-matches may be described as follows: boundaries, coming from
segmentations of the same object, may emerge with different parts missing. Overlap matches
alignment provides a method that optimally aligns the features strings, regardless of missing
start-, interior-, or end parts of the strings.

In order to perform an overlap-matches alignment, the alignment matrix needs to be initialized
in a first step using the following equations:

F (i, 0) = 0 for i = 1 . . . m with m = length(S1), (4.8)
F (0, j) = 0 for j = 1 . . . n with n = length(S2). (4.9)

The recurrence relations within the matrix is now identical to the one used in global alignments:

16

4.2 Alignment Matrices

Figure 4.1: This figure schematically shows possible solutions for an overlap alignment. On the
left side, a usual local match is shown. The image on the right side shows an overlap
match of S1 and S2.

T (i, j) = max


T (i− 1, j − 1) + c(Ui, Vj)

T (i− 1, j)− d

T (i, j − 1)− d.

(4.10)

The initialization of the top row and the left column of T with zeros allows the algorithm to
start subsequences at any point without a penalty. The final alignment score is the highest entry
of the right most column and the bottom row of T , due to the possibility of overlapping:

s(S1, V1) = max

{
maxi=1..n {T (m, i)}
maxj=1..m {T (j, n)}.

(4.11)

The reconstruction of the alignment is again very similar to the reconstruction of global align-
ments. The decisions made in 4.10 and 4.11 are again stored in the corresponding cells of
a second matrix A. The trace back starts at A(is, js), where the indices is and js denote the
scoring entry T (is, js). The alignment is now found, like for global alignment, by tracing the
decisions back to the first entry where i = 0.

4.2 Alignment Matrices

Now that a similarity score s(S1, S2) for two feature vector strings S1 and S2 can be calculated,
the kernel matrices for the categorization step can be computed. The kernel is built as a pairwise
alignment of the strings. The feature extraction step provides a list Li of strings for each image
Ii. All Li from the training image set are concatenated to one list Ltrain. Pairwise alignments
of the elements Ltrain

i from this list lead to the training kernel M :

Ltrain =
t⋃

i=1

Li with Li = {Vi1, . . . , Vik} from I1 . . . It, (4.12)

17

4 String Alignment

M(i, j) = s(Ltrain
i , Ltrain

j). (4.13)

The entry (i, j) in the alignment matrix M simply is the score of the the ith string aligned with
the jth string of Ltrain. The matrix M represents the training kernel used in the classifyer.

A second matrix N is also created using a list Ltest, which contains all feature strings from the
test image set J1,Ju. The test feature strings Ltest

i are aligned against the training feature
Ltrain

i strings to form the test score matrix N ;

Ltest =
u⋃

i=1

L′
i with L′

i = {V ′
i1, . . . , V

′
ik} from J1 . . . Ju, (4.14)

N(i, j) = s(Ltrain
i , Ltest

j). (4.15)

4.3 Implementation

The Matlab framework provides several functions that accomplish the tasks discussed in this
chapter. The four presented alignment methods are implemented as functions, that take two
feature stings and the according parameter as input. SA_localAlignment implements local
alignment, SA_globalAlignment implements global alignment, SA_repeatedMatchesAlignment
implements repeated matches and SA_overlapMatchesAlignment implements overlap matches
alignment.

The function SA_alignmentMatrix combines the four implementations of alignment methods
into one function, which computes an alignment matrix. One of the four alignment methods is
used to create the score matrix dependent on passed parameter.

To model the whole process, beginning with boundary and feature extraction and resulting in a
score matrix of pairwise aligned feature strings, several functions are provided. D_parseFileName
is a help function that parses content files in order to create a list of strings that encode the names
of available images from an image category. This function is used by D_processTrainingData
to process a given list of images, together with several of the lower level functions presented
here and in chapter 3.3. Boundaries are extracted from a set of training images along which then
feature strings are drawn. The extracted strings are stored, and the training score matrix is com-
puted as pairwise alignment of all feature strings. The function D_processTestData has similar
functionality as it stores the extracted feature strings from a set of test images and computes the
test score matrix as alignment of all training strings with all test strings.

18

5
Categorization

The next step in the object recognition approach is to train a classifier to be able to categorize
the different images classes. For this purpose a standard black-box classifier can be used, where
only a valid Mercer kernel is needed. The kernel PCA algorithm [SSM98] describes a method
to recover the basis vectors from a kernel matrix by way of eigenvalue decomposition. This
requires the kernel matrix to be positive semi-definite, which is not guaranteed by the align-
ment methods discussed in chapter 4. The matrix M typically contains several small negative
eigenvalues. To produce a Mercer kernel for the classifier, however, the kernel PCA algorithm
can still be applied with the small change that all negative eigenvalues λi < 0 have to be set
to zero. In detail, the adapted algorithm to recover the basis vectors {xi}m

i=1 for the matrix M
proceeds as follows:

1. Calculate the centralized dot product matrix M c = QMQ with Q = Im − 1
m

eme>m and
em = (1, 1, . . . 1)> being a m-vector of ones.

2. Express M c in its eigenbasis: M c = V Λ∗V >, where V = (v1, . . . vm) contains the
eigenvectors vi and Λ∗ = diag(λ1, . . . λp λp+1, . . . , λm) is a diagonal matrix of eigenval-
ues with λp+1, . . . , λm 6 0. The negative eigenvalues have to be set equal to zero to form
the matrix Λ = diag(λ1, . . . , λp 0, . . . , 0).

3. Calculate the m× p map matrix

Xp = Vp(Λp)
1/2, with Vp = (v1, . . . vp) and Λp = diag(λ1, . . . λp). (5.1)

The rows of Xp contain the vectors {xi}m
i=1 in p dimensional space, whose mutual dot

products are given by M .

19

5 Categorization

Predicting the cluster membership of new data. First notice that due to the eigenvalue
equation M cVp = VpΛp, we can rewrite (5.1) in the form:

Xp = M cVp(Λp)
−1/2. (5.2)

Consider now the situation where we are given n new objects and the corresponding n × m
matrix of pairwise alignment scores Nij between these new objects and all m original objects.
In order to predict the cluster membership of the new objects, we first have to project them
into the Euclidean space spanned by the eigenvectors Vp of the centered dot product matrix M c.
Then, we assign each new object to the cluster with the closest centroid. For the projection
itself, two steps are required:

1. re-express the matrix N in the centered coordinate system:

N c
ij = Nij −

1

m

m∑
k=1

Nik −
1

m

m∑
k=1

M c
kj +

1

m2

m∑
k,l=1

M c
kl (5.3)

2. project the objects represented by N c into the coordinate system spanned by the eigen-
vectors Vp of the matrix M c:

Xnew
p = N c Vp(Λp)

−1/2. (5.4)

20

6
Experiments

As one of the main goals of this thesis is to find out which combinations of polar scales and
alignment methods lead to the best retrieval rates, we conducted a series of tests. The images
used were taken from the caltech 101 database.

6.1 Experimental Setup

We performed different test runs on 10 test and 10 training images from three different cate-
gories: crab, stop sign, and Windsor chair. Per test run, one of three different linear polar scales
was used to extract feature-strings along the boundaries of of all test- and training images. The
three polar scales can be seen in Figure 6.1 in relation to an average-sized image.

Two feature images where used to extract feature strings. First, the gray value of the image,
and, second, the probabilistic boundary map produced in an additional step of the segmentation
(See chapter 2). An example of these feature images is shown in Figure 6.2.

Figure 6.1: The three different sized polar scales used for information extraction.

21

6 Experiments

Figure 6.2: The feature images that were used in the testing. The left picture is the original
image. The picture in the middle shows the gray value image. On the right, the
probabilistic boundary map is shown.

For all three sets of feature strings resulting from the feature extraction using one of the three
polar scales four different alignment methods were used to compute the score matrices of pair-
wise alignment of all training strings against each other and all training strings against the test
strings; Local alignment, global alignment, repeated matches alignment, and overlap matches
alignment. Kernel matrices were produced by three different sets of parameter for each of the
four alignment methods; Gap penalty d = 0.3 and score threshold T = 5, d = 0.6 and T = 10,
d = 0.9 and T = 15. This resulted in 12 different training and test score matrices per image
category for test run 1 and 2. The third test run was performed on local and global alignment
only, resulting in 6 different training and test score matrices per image category.

The computed score matrices were transformed according to the method described in chapter 5
to create valid Mercer kernels. A standard SVM based classifier was then trained with each of
the training kernels and retrieval rates were computed by evaluating the test kernels.

6.2 Results and Conclusion

The Figures 6.3, 6.4, and 6.5 show the test results for the three sets of feature strings. In the
first test run the feature strings resulting from the extraction with a large polar scale were used.
The second test run was based on the data coming from a medium-sized polar scale, and the
last test run used the feature strings from a small polar scale. The retrieval rates of each method
and parameter set are shown on the y-axis of the charts, where class 0 is crab, class 1 is stop
sign and class 2 is Windsor chair. The retrieval rates are values between [0;1] and display the
percentage of correct classified test images of the corresponding class. The right most bar for
each alignment shows the average retrieval rate of all three classes together.

As can be seen in 6.3 and 6.4, the average retrieval decreases for more complicated alignments;
Repeated matches alignment and overlap matches alignment. This shows, that there is obviously
no need to use complicated methods, since the simple alignments (global- and local alignment)
lead to better results, regardless of the size of the polar scale used to extract the feature strings.

Another observation, which becomes clear if the retrieval rates of the three test runs are com-
pared, is that the average retrieval rate decreases along with the size of the polar scale. Fig-
ure 6.3 shows the results of the test where the largest polar scale was used. In comparison to
Figure 6.4 and 6.5, the retrieval rates are significantly higher for all tested alignment methods.

22

6.2 Results and Conclusion

Figure 6.3: Test results using a large polar scale.

Figure 6.4: Test results using a medium-sized polar scale.

This leads to the conclusion that bigger polar scales, which capture more information of objects
than smaller ones, work better.

The different parameter sets used for each alignment were also target of testing. However, the
experiments don’t allow a clear answer to the question which gap penalty and threshold values
lead to the best results.
In the first test run (Figure 6.3), global alignment performs best for small gap penalties. This
observation is understandable as this method may need to introduce a lot of gaps to align two
strings. Local alignment, in contrast, seems to be quite independent of the gap penalty size,
which is a direct consequence of the local method.
Repeated and overlap matches alignment show for class 0 (crab) a tendency to lower retrieval
rates for larger gap penalties.
These different observations, however, could not clearly be verified in the other two test runs
(Figure 6.4 and Figure 6.5). Also the impact of the threshold parameter t, which was used
in overlap and repeated matches alignment, shows no clear trend. Therefore, no concluding
statement about the impact of alignment parameter can be made at this point. More experiments
need to be performed to answer this question.

The retrieval rates of class 1 (stop sign) are in all three test runs significantly lower than the

23

6 Experiments

Figure 6.5: Test results using a small polar scale.

rates of the other classes. This may be explained by the fact, that the images used in the stop
sign class have partly large differences in the scale of the displayed object. In some cases, the
stop sign covers the whole image. In others, the image was taken from fairly far away, resulting
in a lot of background region compared to the stop sign itself. This shows, that the method
depends a lot on the scale of the displayed objects. Large differences can lead to an unstable
classification.

The test results in general show, however, that the method is indeed capable of performing a
state-of-the-art object recognition. Retrieval rates that are mostly above 0.75 encourage further
examination of the approach. Training and test images have admittedly been chosen to be well
separable, but the method seems to deliver good results nonetheless.

24

7
Conclusion

In this thesis, a method was presented which allows to exploit low-level image segmentation
for object recognition. A series of segmentations per image are used to extract features along
the segment boundaries. Several post processing steps were shown that optimize the segment
boundaries for the ensuing alignment. Polar scales were introduced as a method to spatially
divide the image along the boundaries in order to extract feature vectors. Different alignment
methods have been discussed to create a kernel score matrix using the extracted feature strings.
With an adapted version of the kernel PCA algorithm [SSM98], the score matrices can be trans-
formed into valid Mercer kernels. These kernels can be used to train a standard classifier.

Experiments show that this method is indeed capable of performing a state-of-the-art object
recognition. It seems to work best when large polar scales are used to extract feature strings.
The size of the polar scale, which lead to the highest retrieval rates, was roughly the same as
the dimension of the image. This shows that it is necessary to consider long-range interactions
in images.

Tests also show that average retrieval rates decrease for more complicated alignments like re-
peated matches alignment and overlap matches alignment. This observation indicates, that there
is no need to use complicated methods as the simple alignments (global- and local alignment)
lead to better results, regardless of the size of the polar scale used to extract the feature strings.

The different parameter sets used for each alignment were also target of testing. However, the
tests do not allow a clear answer to the question which gap penalty and threshold values lead to
the highest retrieval rates.
Global alignments seem to perform best for small gap penalties. Local alignments, in contrast,
seem to be quite independent of the gap penalty. For repeated and overlap matches alignment,
a tendency to lower retrieval rates for larger gap penalties can also be observed for particular

25

7 Conclusion

image classes.
These tendencies, however, are limited to some configurations, and could not be verified for
all test cases. Therefore, no concluding statement can be made at this point regarding the
parametrization of the alignment.

Tests have also uncovered another problem: Large differences in the scale of the displayed
object lead to unstable classifications. This effect needs further examination to ensure that the
method can be used on much larger sets of possibly low-quality images.

26

Bibliography

[Aga04] Awan A. Roth D. Agarwal, S. Learning to detect objects in images via a sparse,
part-based representation. IEEE Trans. Pattern Anal. Machine Intell., 26(11), 2004.

[Ger98] Potter D.F. Chi Z. German, S. Composition systems. Technical report, Division of
Applied Mathematics, Brown University, Providence, RI, 1998.

[Rot04] Lange T. Roth, V. Adaptive feature selection in image segmentation. Pattern Recog-
nitionDAGM04, 2004.

[SSM98] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[Yu02] Gross R. Shi j. Yu, S.X. Concurrent object recognition and segmentation by graph
partitioning. NIPS, MIT Press, 2002.

